Package 'RMSD'

Title: Refined Modified Stahel-Donoho Estimators for Outlier Detection
Description: A function for multivariate outlier detection named Modified Stahel-Donoho (MSD) estimators is contained. The function is for elliptically distributed datasets and recognizes outliers based on Mahalanobis distance. The function is called the single core version in Wada & Tsubaki (2013) <doi:10.1109/CLOUDCOM-ASIA.2013.86> and evaluated with other methods in Wada, Kawano & Tsubaki (2020) <doi:10.17713/ajs.v49i2.872>.
Authors: Kazumi Wada [aut, cre]
Maintainer: Kazumi Wada <[email protected]>
License: GPL (>= 3)
Version: 0.1.0
Built: 2024-11-04 19:53:05 UTC
Source: https://github.com/kazwd2008/rmsd

Help Index


Modified Stahel-Donoho Estimators (Single core version)

Description

This function is for multivariate outlier detection. Ver.1.6 2009/07/14 Published at http://www.stat.go.jp/training/2kenkyu/pdf/ihou/67/wada1.pdf (in Japanese) Ver.1.7 2018/10/19 Modify gso function to stop warning messages Ver.2 2021/09/10 Added the outlier detection step

Usage

RMSD(inp, nb = 0, sd = 0, pt = 0.999)

Arguments

inp

imput data (a numeric matrix)

nb

number of basis

sd

seed (for reproducibility)

pt

threshold for outlier detection (probability)

Value

a list of the following information

  • u final mean vector

  • V final covariance matrix

  • wt final weights

  • mah squared Mahalanobis distance of each observation

  • FF F test statistics

  • cf threshold to detect outliers (percentile point)

  • ot outlier flag (1:normal observation, 2:outlier)